Create an array from a list
my_list = [1, 2, 3]
my_array = np.array(my_list)
Create an array with arrange
my_array = np.arange(0, 10)
my_array2 = np.arange(0, 10, 2) # with step 2
Create an array with zeros
my_array = np.zeros((2, 3)) # default type if float
my_array2 = np.zeros((2, 3), np.int32) # with type int
Create an array with ones
my_array = np.ones((10, 8), np.int32)
Create an array from random
np.random.seed(101)
array1 = np.random.randint(0, 100, 10)
array2=np.random.randint(0,100,10)
Max, Min, Mean
np.random.seed(101)
array1 = np.random.randint(0, 100, 10)
print(array1.max())
print(array1.argmax()) # index of max value
print(array1.min())
print(array1.argmin()) # index of min value
print(array1.mean())
Indexing an array
matrix = np.arange(0, 100).reshape(10, 10)
print(matrix)
print(matrix[2,3])
row = 1
col = 4
print(matrix[row,col])
Manipulating an array
matrix = np.arange(0, 100).reshape(10, 10)
print(matrix)
matrix[0:3, 0:3] = 0
print(matrix)
Copying an array
matrix: np.ndarray = np.arange(0, 100).reshape(10, 10)
print(matrix)
matrix2 = matrix.copy()
matrix2[0:3, 0:3] = 0
print(matrix2)
Slicing an array
matrix = np.arange(0, 100).reshape(10, 10)
print(matrix[1, :]) # whole row 1
print(matrix[:, 1]) # whole col 1
print(matrix[1, 1:4]) # row 1 from col 1 to 4
print(matrix[1:4, 1]) # col 1 from row 1 to 4
new_matrix: np.ndarray = matrix[1, :]
print(new_matrix.reshape(5, 2))
Reshaping an array
np.random.seed(101)
array1 = np.random.randint(0, 100, 10)
print(array1)
print(array1.shape)
array2 = array1.reshape((2, 5))
print(array2)
print(array2.shape)
References
https://www.tutorialspoint.com/numpy/index.htm